Introduction to Cosmology
Wintersemester 06/07


Prof. Dr. K.-H. Kampert, Dr. J. Rautenberg

Lectures: Thursday 14:15 - 16:30, F13.11, Exercises: Monday
(L3 / E1 ; 6 Credits)

The lecture is addressed to students after the 'Vordiplom' and, amongst others, to those in the Master of Science in Physics and in "Computer Simulation in Science". Knowledge from the lecture 'Introduction to Nuclear and Particle Physics' is not compellingly necessary but recommended for a deeper understanding of the subject.

Cosmology experienced an enourmous development over the past 10 years and it has progressed from a rather qualitative to a high precision science as of nowadays. Also the current Nobelpreis for physics was given for the cosmologically important observation of the 3K Background radiation. The lecture will provide a basic introduction to this fascinating field of research covering both the birth of Universe as well as its future development.

Contents:

1.     Brief Historical Introduction (pdf)
1.1   General Remarks
1.2   The long path into modestly
         (Link: The 25 greatest astronomical findings of all time before 1998 )

2.    Observations of the Universe: A Survey (pdf)
2.1   Observations in the visible electromagnetic spectrum
        (Galaxis in the optical, M31 in Infrared)
2.2   Other wavelength
2.3   Particle Radiation

3.    The Newtonian Universe (pdf)
3.1   Olbers Paradoxon
3.2   Homogenity and Isotropy: the cosmological principle
         (Hubble deep field, - ultra deep field, history of the Universe,
          Galaxy Survey: Direction, Result, Mikrowave Background)

4.    Expansion of the Universe (pdf)
4.1   Measuring distances
          (Hipparcos Satellite, Hertzsprung-Russel Diagram, Cepheids, Supernovae)
4.2   Apparent and absolute magnitudes
4.3   Measurements of red-shift: The Hubble Law
          (example NGC1357, Hubble-Diagram, Field-Distortion)
4.4   Red-shift and expansion

5.     Metric of Spacetime (pdf)
5.1    Newton's Gravitation und Cosmic Dynamics
5.2    Interpretation of Friedmann Equation
5.3    Minkowski Metric
5.4    Robertson-Walker-Metric
5.5    Flat, Spherical and Hyperbolic Geometries
           (curved space, world models, example: transatlantic flight)

6.    Simple Cosmological Models and Observational Parameters (pdf)
6.1     Light Propagation and Redshift
          (Proper Distances)
6.2     Cosmic Dynamics under the Influence of Matter and Radiation
6.3     Cosmic Dynamics in Curved Spaces
6.4     The Density-Parameter 0
6.5     The Deceleration-Parameter q0
6.6     The obervable Universe
6.7     Luminosity Distance dLum
          (dLum vs Luminosity Distance, Comparison to Data)
6.8     Angular-Diameter Distance dDiam
          (Illustration, Angular-Diameter vs z, Angular-Diameter Distance vs z)

7.    The Cosmological Constant (pdf)
7.1     Introduction of
          (Postkarte Einsteins an Weyl)
7.2     Dynamics and Cosmological Models with ≠ 0
         (Evolution with Lambda, Omega_Lambda vs Omega_0)
7.3     Influence of to dLum , dDiam and t0
         (dLum vs z, dDiam vs z, t0 vs z )
7.4     Results from Supernovae Observations
         (Magnitude vs z, Evolution of Scale-Factor, Omega_L vs Omega_M;
          siehe auch http://supernova.lbl.gov; Delta-m vs z
)

8.       Age Determination (pdf)
8.1     Hubble-Time
8.2     Age of the solar System: Nuclear Dating
          (Uranium Decay Series, Data from Meteorites)
8.3     Age of the Galaxy: Stellar Evolution
          (Globular Cluster M13, HRD of Globular Clusters)

9.       Thermodynamics of the early Universe (pdf)
9.1     Radiation under adiabatic expansion
          (T as a fct. of z)
9.2     Particles under adiabatic expansion
9.3     From radiation to a matter dominated Universe
           (Evolution of matter densities)
9.4     Decoupling of radation and matter

10.      The Cosmic Microwave Background radiation (pdf)
10.1     Discovery
            (Penzias & Wilson, Spectrum, COBE-, WMAP-, Position of WMAP)
10.2     Properties of the CMB
            (COBE-sky-plot, COBE-vs-WMAP, Horizone)
10.3     Large and small angle anisotropies of CMB
            (Power-Spectrum, Sensitivity to cosm. parameters, Omega_L vs Omega_M, Planck Satellite)
10.4     Polarisation

11.      Primordial Nucleosynthesis (BBN) (pdf)
11.1     Prediction
            (Nuclear reaction scheme, time devlopment, Abundancies as a fct of the baryon/photon ratio)
11.2     Experimental Observations
            (4He/H-ratio, 7Li/H-ratio)
11.3     Big-Bang Nukleosynthesis and Neutrino-Flavors
            (4He and Neutrinoflavors, BBN and number of Neutrino-Flavors)

12.      Dark Matter (pdf)
12.1     Rotation curves of spiral galaxies
            (E.g.: NGC 3198, NGC 7331)
12.2     Baryonic Dark Matter
            (Gravitational lenses; Einstein-Ring, Micro-Lensing)
12.2.1  Intra-Cluster Gas
12.3     Non-Baryonic Dark Matter
12.3.1     Direct Observations
               (WIMP exclusion limits)
12.3.2     Indirect Observations
12.4     Structure Formation and Dark Matter
            (Galaxy-Survey, Structure)

13.    Inflation (pdf)
13.1     Problems of Standard Cosmological Model
13.2     Phase Transitions in the Early Universe
13.3     Basic Idea of Inflation
13.4     Planck Scale


Problems: Exercise 1, Exercise 2, Exercise 3, Exercise 4, Exercise 5, Aufgabe 6


Literature:
Author(s)
Title
Publisher
A. Liddle Introduction to modern Cosmology Wiley
D.J. Raine, E.G. Thomas An introduction to the science of cosmology IoP
M. Rowan-Robinson Cosmology Clarendon Press
Peacock, John A. Cosmological Physics Cambridge
Peebles, P.J.E. Principles of Physical Cosmology Princeton
Narlikar, J.V. Introduction to Cosmology Cambridge
Unsöld/Baschek Der neue Kosmos Springer
Börner The Early Universe Springer
Gönner Einführung in die Kosmologie Spektrum
Weigert/Wendker Astronomie und Astrophysik VCH
Bergström, Goobar Cosmology and Particle Physics Spektrum
T. Fließbach Allgemeine Relativitätstheorie Spektrum

Back to Homepage...
Vorlesung