Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector

(IceCube Collaboration)

1Department of Physics and Astronomy, University of Alaska, Anchorage, 3211 Providence Drive, Anchorage, Alaska 99508, USA
2CTSPS, Clark-Atlanta University, Atlanta, Georgia 30314, USA
3Department of Physics, Southern University, Baton Rouge, Louisiana 70813, USA
4Department of Physics, University of California, Berkeley, California 94720, USA
5Institut für Physik, Humboldt Universität zu Berlin, D-12489 Berlin, Germany
6Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
7Science Faculty, Université Libre de Bruxelles, CP230, B-1050 Brussels, Belgium
8Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium
9Department of Physics, Chiba University, Chiba 263-8522, Japan
10Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
11Department of Physics, University of Maryland, College Park, Maryland 20742, USA
12Department of Physics, Universität Dortmund, D-44221 Dortmund, Germany
13Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent, Belgium
14Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
15Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
16Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
17Blackett Laboratory, Imperial College, London SW7 2BW, United Kingdom
18Department of Astronomy, University of Wisconsin, Madison, Wisconsin 53706, USA
19Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
20Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
21University of Mons-Hainaut, 7000 Mons, Belgium

0031-9007/06/97(22)/221101(5) 221101-1 © 2006 The American Physical Society
Introduction.—Soft gamma-ray repeaters (SGRs) are x-ray pulsars which have quiescent soft (2–10 keV) periodic x-ray emissions with periods ranging from 5 to 10 s and luminosities of the order of $10^{33–35}$ erg/s. They exhibit repetitive bursts lasting ~ 0.1 s which reach peak luminosities of $\sim 10^{41}$ erg/s in x rays and γ rays. There are four known SGRs, three in the Milky Way (including SGR 1860-20) and one in the Large Magellanic Cloud. Three of the four known SGRs have had hard spectrum (\simMeV energy) giant flares with luminosities reaching up to $\sim 10^{47}$ erg/s. The first of these giant flares (from SGR 0525-66) was observed on 5 March 1979 by the Venera 11 and 12 spacecraft. SGR 1900 + 14 exhibited a giant flare in 1998 [1]. The most recent and brightest flare came from SGR 1806-20 on 27 December 2004. This flare lasted about 5 min (the duration of the initial spike was ~ 0.2 s) and had a peak luminosity of $\sim 2 \times 10^{47}$ erg/s and a total energy emission of $\sim 5 \times 10^{46}$ erg [2], which made it the most luminous transient event ever observed in the Galaxy. This flare was observed by several satellite experiments [3–5], although they saturated during the blast. Recent estimates locate the source at a distance of $15.1^{+1.3}_{-1.8}$ kpc [6], but this value is still under debate [7].

The favored “magnetar” model for these objects is a neutron star with a huge magnetic field ($B \sim 10^{15}$ G). These giant flares can be explained as global crustal fractures due to magnetic field rearrangements liberating a high flux of x rays and γ rays [8].

The uncertainties in the spectral measurement are large, but fits to the data favor the presence of a nonthermal component [2,9], which would imply an important high-energy emission. Indeed, SGRs have been proposed as the sources of the ultra-high-energy cosmic rays [10].

The possibility of using underground detectors to observe the muons produced in the electromagnetic showers induced by TeV gammas generated in these flares was presented in Ref. [11]. There have also been suggestions of high-energy neutrino production. Gelfand et al. [12] interpret the observations of an expanding radio source [13] as the hint of a baryonic fireball. Ioka et al. [14] also argue that high-energy neutrino production can be related to the fraction of burst energy released in the form of baryons.

On 27 December 2004, a giant γ flare from the Soft Gamma-Ray Repeater 1806-20 saturated many satellite gamma-ray detectors, being the brightest transient event ever observed in the Galaxy. AMANDA-II was used to search for down-going muons indicative of high-energy gammas and/or neutrinos from this object. The data revealed no significant signal, so upper limits (at 90% C.L.) on the normalization constant were set: $0.05(0.5)$ TeV$^{-1}$ m$^{-2}$ s$^{-1}$ for $\gamma = -1.47 (-2)$ in the gamma flux and $0.4(6.1)$ TeV$^{-1}$ m$^{-2}$ s$^{-1}$ for $\gamma = -1.47 (-2)$ in the high-energy neutrino flux.

DOI: 10.1103/PhysRevLett.97.221101 PACS numbers: 95.85.Pw, 95.55.Ka, 95.55.Vj, 97.60.Gb
the background of atmospheric muons becomes negligible [11], thereby allowing a search for TeV γ rays and down-going TeV neutrinos.

The IceCube collaboration, which operates the AMANDA detector, follows a policy of blindness in its analysis strategies. By studying the expected backgrounds and signals prior to looking at the data, the analysis can be designed in an unbiased fashion. In the case of expected small signals, this is particularly relevant for having a clear procedure to determine the probability of an event to be produced by background. Thus, in this analysis, the determination of the optimum selection criteria is done using the simulation of the signal and comparing it with the expected background. The procedure, similar to that used in the search for upward moving neutrinos from gamma-ray bursts [18], is as follows: (i) The background on source and off time is calculated using real data, keeping blind 10 min around the burst onset. About 1 d of off-time data was used to monitor the stability of the detector. (ii) The signal from the source is simulated in order to estimate the angular resolution and the effective area of the detector. (iii) The appropriate time window is estimated, based on the flare onset times given by different x-ray satellites and their counting rates. (iv) The optimum search bin size is found by minimizing the model discovery factor (MDF) [19], defined as

$$MDF = \frac{\mu(n_\nu, C.L., SP)}{n_s}$$

where μ is the Poisson mean of the number of signal events which would result in rejection of the background hypothesis, at the chosen C.L., in statistical power (SP) percent of equivalent measurements, and n_s is the number of signal events predicted by the model. This definition is analogous to the model rejection factor (MRF) (see Ref. [19]) that is used for setting upper limits. In the case of the MDF, the bin size is optimized to maximize the probability of discovery (for C.L. corresponding to five sigma and SP = 90%). (v) Once the optimum search bin size has been found, the unblinding of the data is done; i.e., the events inside the time window and the search bin are counted. (vi) This number of events is translated into a flux, or a flux limit if no significant excess is found through the knowledge of the expected signal in the detector for the given analysis cuts.

Although both TeV γ rays and neutrinos produce muons in the detector array, the optimal choice of selection criteria depends on the assumed signal. The analysis was optimized to the TeV γ signal. Any further optimization for a neutrino signal would be more than offset by the penalty for an additional trials factor.

Data and simulation.—In order to have a background estimate for the flare, a time and angular window have to be defined around the flare at equatorial coordinates (J2000): right ascension = UT 18:08:39.34; declination = -20° 39.7^\prime [13,20,21]. The bulk of the flare energy was concentrated in less than 0.6 s. The counting rate of the Burst Alert Telescope on board the Swift spacecraft drops by more than 2 orders of magnitudes after 0.6 s from the onset of the burst [9]. Based on the observation time for each satellite [3,5,22–24], and accounting for their positions, the expected signal times in AMANDA were calculated. The spread of the resulting times indicate that a safe window is 1.5 s, centered at UT 21:20:26.6 of 27 December 2004, the onset time of the flare.

To evaluate the performance of the detector, simulations were performed for several input signals. The CORSIKA-QGSJET01 [25] and ANIS [26] codes were used to simulate the photon (and proton) and neutrino interactions, respectively. The range of generated energies for photons was 10^{5}–10^{7} TeV and for protons was 10 GeV to 10^{4} TeV. The tracks were reconstructed with the same iterative log-likelihood fitting procedure that was applied to the real data.

The angular resolution for different cuts has been studied using the simulation of down-going muons generated by cosmic rays. The angular resolution, defined as the median of the angular difference between the true and the reconstructed track, is 3.5°. This value was obtained using atmospheric down-going muon high statistics simulations, and it was checked that this result is robust within 0.1° for the expected signals of photons and neutrino induced muons. We also considered a variety of spectral indices for the γ-ray spectrum assuming values given in Ref. [11], and we found that the angular resolution is almost independent of the spectral index. The effective areas, defined as the equivalent area for a perfect detector that is able to detect particles with 100% efficiency, for gammas and neutrinos are shown in Fig. 1 as a function of the energy.

As noted earlier, the optimum angular window is determined by minimizing the MDF. In Fig. 2 we show the
using two different models—CORSIKA/QGSJET and an ana-
lytic calculation [16]—and found that they agreed to
about 15%. We have compared the muon yields
expected background is 0.06 counts. For events that
satify the detector trigger, we keep almost 80% of the
signal in this angular window.

The search bin size which optimizes the probability of
discovery is at 5.8°. With this cut and a 1.5 s time window,
the expected background is 0.06 counts. For events that
satisfy the detector trigger, we keep almost 80% of the
signal in this angular window.

The stability of the run was checked in order to exclude
possible nonparticle events induced by detector elec-
tronics. These events are identified by a specific method
looking for anomalous values in a set of defined variables.
A correction is made for the electronics dead time (17%,
which is a typical value in normal runs). Finally, the
simulated and measured distributions of an extensive set
of variables, like zenith angle, number of hit optical mod-
ules, and hit times, were compared in the search for pos-
sible anomalies. In all the cases the agreement was within
the systematic errors estimated above.

Systematic uncertainties.—Several sources of system-
atic uncertainties have been considered in this analysis.
The uncertainty of the hadronic model calculation is esti-
mated to about 15%. We have compared the muon yields
using two different models—CORSIKA/QGSJET and an ana-
lactic calculation [16]—and found that they agreed to
within 5%. The uncertainty in the detector efficiency
(20%) comes mainly from the overall sensitivity of the
OMs and the optical properties of the ice. The effect has
been estimated simulating different reasonable ice models
and OM sensitivities.

The stability of the run was checked in order to exclude
possible nonparticle events induced by detector elec-
tronics. These events are identified by a specific method
looking for anomalous values in a set of defined variables.
A correction is made for the electronics dead time (17%,
which is a typical value in normal runs). Finally, the
simulated and measured distributions of an extensive set
of variables, like zenith angle, number of hit optical mod-
ules, and hit times, were compared in the search for pos-
sible anomalies. In all the cases the agreement was within
the systematic errors estimated above.

Results.—Once the optimum search bin size of 5.8°
around the source was determined, we unblinded the
1.5 s data around the burst looking for events satisfying
the analysis requirements. No event was observed in the
on-source, on-time window. Then we determined the upper
limits [27] of the normalization constant \(A_{90} \) at a C.L. of
90% assuming a power-law energy spectrum,

\[
\frac{dN}{dE} = A_{90}(E/\text{TeV})^{\gamma}
\]

with a cutoff at 10^5 TeV. These limits are shown in Fig. 3
together with the sensitivity of the detector. The effect of
the attenuation of the gamma flux by the cosmic micro-
wave background and the Galactic interstellar radiation
field has been also taken into account and has been calcu-
lated from the results of Ref. [28].

To give an idea of the impact of these limits on theo-
retical estimates such as the \(\gamma \) flux extrapolations presented
in Ref. [11], for spectral index \(-1.47 \) (−2) the limit on the
gamma flux normalization constant \(A_{90} = 0.05(0.5) \text{ TeV}^{-1} \text{m}^{-2}\text{s}^{-1} \). The calculation of this limit
with the 500 TeV cutoff used in [11] would give
3.3(33) \text{ TeV}^{-1} \text{m}^{-2}\text{s}^{-1} \), which rule out spectral indices
\(\gamma \sim -1.5 \), but not softer.

Since the source is above the horizon (hence there is
not much column depth for neutrinos to interact), the
neutrino flux limits are an order of magnitude worse than
the TeV \(\gamma \) limits, but can still be used to constrain models.
In cases where there is large baryonic outflow, high-energy
neutrinos are produced and the baryons may make the
source partially opaque to high-energy photons. Com-
paring the extrapolations in Ref. [11], for spectral index
\(-1.47 \) (−2) the limit on the \(\nu_\mu \) flux normalization is

\[
A_{90}(\text{m}^2\text{s}^{-1}\text{TeV}^{-1})
\]

The search bin size which optimizes the probability of
discovery is at 5.8°. With this cut and a 1.5 s time window,
the expected background is 0.06 counts. For events that
satisfy the detector trigger, we keep almost 80% of the
signal in this angular window.

Systematic uncertainties.—Several sources of system-
atic uncertainties have been considered in this analysis.
The uncertainty of the hadronic model calculation is esti-
mated to about 15%. We have compared the muon yields
using two different models—CORSIKA/QGSJET and an ana-
lactic calculation [16]—and found that they agreed to
within 5%. The uncertainty in the detector efficiency
(20%) comes mainly from the overall sensitivity of the
OMs and the optical properties of the ice. The effect has
been estimated simulating different reasonable ice models
and OM sensitivities.

The stability of the run was checked in order to exclude
possible nonparticle events induced by detector elec-
tronics. These events are identified by a specific method
looking for anomalous values in a set of defined variables.
A correction is made for the electronics dead time (17%,
which is a typical value in normal runs). Finally, the
simulated and measured distributions of an extensive set
of variables, like zenith angle, number of hit optical mod-
ules, and hit times, were compared in the search for pos-
sible anomalies. In all the cases the agreement was within
the systematic errors estimated above.

Results.—Once the optimum search bin size of 5.8°
around the source was determined, we unblinded the
1.5 s data around the burst looking for events satisfying
the analysis requirements. No event was observed in the
on-source, on-time window. Then we determined the upper
limits [27] of the normalization constant \(A_{90} \) at a C.L. of
90% assuming a power-law energy spectrum,

\[
\frac{dN}{dE} = A_{90}(E/\text{TeV})^{\gamma}
\]

with a cutoff at 10^5 TeV. These limits are shown in Fig. 3
together with the sensitivity of the detector. The effect of
the attenuation of the gamma flux by the cosmic micro-
wave background and the Galactic interstellar radiation
field has been also taken into account and has been calcu-
lated from the results of Ref. [28].

To give an idea of the impact of these limits on theo-
retical estimates such as the \(\gamma \) flux extrapolations presented
in Ref. [11], for spectral index \(-1.47 \) (−2) the limit on the
gamma flux normalization constant \(A_{90} = 0.05(0.5) \text{ TeV}^{-1} \text{m}^{-2}\text{s}^{-1} \). The calculation of this limit
with the 500 TeV cutoff used in [11] would give
3.3(33) \text{ TeV}^{-1} \text{m}^{-2}\text{s}^{-1} \), which rule out spectral indices
\(\gamma \sim -1.5 \), but not softer.

Since the source is above the horizon (hence there is
not much column depth for neutrinos to interact), the
neutrino flux limits are an order of magnitude worse than
the TeV \(\gamma \) limits, but can still be used to constrain models.
In cases where there is large baryonic outflow, high-energy
neutrinos are produced and the baryons may make the
source partially opaque to high-energy photons. Com-
paring the extrapolations in Ref. [11], for spectral index
\(-1.47 \) (−2) the limit on the \(\nu_\mu \) flux normalization is

\[
A_{90}(\text{m}^2\text{s}^{-1}\text{TeV}^{-1})
\]

The search bin size which optimizes the probability of
discovery is at 5.8°. With this cut and a 1.5 s time window,
the expected background is 0.06 counts. For events that
satisfy the detector trigger, we keep almost 80% of the
signal in this angular window.

Systematic uncertainties.—Several sources of system-
atic uncertainties have been considered in this analysis.
The uncertainty of the hadronic model calculation is esti-
mated to about 15%. We have compared the muon yields
using two different models—CORSIKA/QGSJET and an ana-
lactic calculation [16]—and found that they agreed to
within 5%. The uncertainty in the detector efficiency
(20%) comes mainly from the overall sensitivity of the
OMs and the optical properties of the ice. The effect has
been estimated simulating different reasonable ice models
and OM sensitivities.

The stability of the run was checked in order to exclude
possible nonparticle events induced by detector elec-
tronics. These events are identified by a specific method
looking for anomalous values in a set of defined variables.
A correction is made for the electronics dead time (17%,
which is a typical value in normal runs). Finally, the
simulated and measured distributions of an extensive set
of variables, like zenith angle, number of hit optical mod-
ules, and hit times, were compared in the search for pos-
sible anomalies. In all the cases the agreement was within
the systematic errors estimated above.
\(A_{90} = 0.4(6.1) \text{ TeV}^{-1} \text{ m}^{-2} \text{ s}^{-1} \) while the model predicts (accounting for oscillations) 1.7(4.1 \times 10^{-4}) in the same units. We are thus able to exclude an extremely hard neutrino spectrum extrapolated from the measured MeV photon flux. On the other hand, our limit on the high-energy neutrino fluence is still at least 1 order of magnitude larger than the fluence predicted in Ref. [12].

Conclusions. —In summary, we have searched for TeV gammas and neutrinos associated with the 27 December 2004 giant flare from SGR 1806-20. We have demonstrated that the background in underground neutrino arrays such as AMANDA or IceCube is low enough so that they can be used as TeV \(\gamma \) detectors for transient events. This is an important result since these detectors offer a large duty cycle and a wide field of view. This analysis of AMANDA data yielded no muons coincident with the flare. We used this muon nonobservation to place stringent limits on TeV radiation from this source, ruling out some hypothesis proposed in previous papers.

We acknowledge the support from the following agencies: Office of Polar Program and Physics Division of the National Science Foundation, University of Wisconsin Alumni Research Foundation, Department of Energy, and National Energy Research Scientific Computing Center (supported by the Office of Energy Research of the Department of Energy), the NSF-supported TeraGrid system at the San Diego Supercomputer Center (SDSC), and the National Center for Supercomputing Applications (NCSA); Swedish Research Council, Swedish Polar Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research, Deutsche Forschungsgemeinschaft (DFG), Germany; Fund for Scientific Research (FNRS-FWO), Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT), Belgian Federal Office for Scientific, Technical and Cultural affairs (OSTC); and the Netherlands Organization for Scientific Research (NWO). M. R. acknowledges the support of the SNF (Switzerland). J. D. Z. acknowledges the Marie Curie OIF Program (Contract No. 007921).

*TDeceased.
†On leave of absence from Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy.
‡Also at Department of Chemistry and Biomedical Sciences, Kalmar University, S-39182 Kalmar, Sweden.

*Corresponding author.
Electronic address: zornoza@icecube.wisc.edu
Also at IFIC (CSIC-Universitat de València), AC 22085, 46071 Valencia, Spain.

[23] D. Gotz (private communication).