RESULTS FROM 16O INDUCED NUCLEAR INTERACTIONS AT 60 AND 200 A GeV

WA80 Collaboration

R. ALBRECHT a, T.C. AWES b, C. BAKTASH b, P. BECKMANN c, F. BERGER c, R. BOCK a, G. CLAESSON a, L. DRAGON c, R.L. FERGUSON b, A. FRANZ d, S.I.A. GARPMAN e, R. GLASOW c, H.Â. GUSTAFSSON e, i, H.H. GUTBROD a, J.W. JOHNSON b, K.-H. KAMPERT c, B.W. KOLB a, P. KRISTIANSSON d, I.Y. LEE b, I. LUND a, i, H. LÖHNER c, F.E. OBENSHAIN b, A. OSKARSSON e, I. OTTERLUND e, T. PEITZMANN c, S. PERSSON e, F. PLASIL b, A.M. POSKANZER d, M. PURSCHKE c, H.G. RITTER d, R. SANTO c, H.R. SCHMIDT a, T. SIEMARCZUK a, i, S.P. SORENSEN b, i, E. STENLUND e and G.R. YOUNG b

b Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
c University of Münster, D-4400 Münster, Fed. Rep. Germany
d Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
e University of Lund, Sölvegatan 14, S-22362 Lund, Sweden

Received 1 December 1987

Results from 16O induced nuclear interactions with C, Cu, Ag and Au targets at 60 and 200 A GeV are presented. Multiplicity and pseudorapidity-density distributions of charged particles and their dependence on the target mass number are reported. The increase in the particle density with increasing centrality, characterized by the energy flux at zero degrees, is investigated. Comparisons with the Fritiof model reveal systematic differences.

1. Introduction

The fixed target nucleus–nucleus physics program at the CERN SPS was launched when the 16O ion source [1], capable of producing highly charged ions, came into operation. The available energy scale was thereby expanded with nearly two orders of magnitude compared to Berkeley and Dubna energies. The aim of this program is to study the spacetime development of hadronic interactions under extreme conditions of energy and baryon densities within the nuclear dimensions. Central nuclear collisions are accompanied by an intense particle production [2]. In such collisions, high energy densities can be formed over large volumes, and transitions to new phases of matter, e.g. quark–gluon plasma, may occur. As a part of the WA80 [3] experimental program the multiplicity and the pseudorapidity-density distributions of charged particles are studied in 60 and 200 A GeV 16O induced collisions with various nuclear targets. Characterization of an event is done via the energy flux in the forward direction, $\sigma < 0.3^\circ$, which was measured by a Zero-Degree Calorimeter (ZDC) [4] positioned 11 m downstream from the target. Essentially all the kinetic energy carried by the spectator part of the projectile is deposited in the ZDC, and consequently the energy measured there is strongly correlated to the “centrality” of the event. The data

1 EP-Division, CERN, CH-1211 Geneva 23, Switzerland.
2 Post Doctoral Fellowship from the German Research Community (DFG).
3 Post Doctoral Fellowship from the Swedish Natural Science Research Council.
4 On leave of absence from the Institute for Nuclear Studies, PL-00681 Warsaw, Poland.
5 University of Tennessee, Knoxville, TN 37996, USA.

0370-2693/88/$03.50 \textcopyright$ Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
are compared to predictions from the event generator Fritiof [5].

2. The multiplicity detectors

A unique feature of the experiment is the large coverage in pseudorapidity, \(\eta = -\ln \tan(\theta/2) \), for charged-particle detection. Between the polar angles 1.7° and 32°, \(\eta = 4.2 - 1.2 \), the charged particles are measured by large multiplicity arrays consisting of Iarrocci-type streamer tubes [6]. The streamer tubes are read out through capacitively coupled pads and the position of each “fired” pad is recorded.

The first multiplicity array is placed 2.4 m from the target. In the range 10° < \(\theta < 32° \), \(\eta > 1.2 \), it has a granular structure of 5600 pads of the sizes 5.2 \(\times \) 3.5 and 2.1 \(\times \) 5.2 cm². Further downstream, at distances of 5.8 and 6.1 m from the target, two other multiplicity arrays are placed. They both cover the angular range 1.7° < \(\theta < 17° \), \(\eta > 1.9 \), and each of them has 8200 pads of three different sizes, 5.2 \(\times \) 3.5, 2.1 \(\times \) 5.2 and 1.0 \(\times \) 2.6 cm², respectively. All these arrays have an area of about 9 m² each. A fourth, somewhat smaller array is placed below the beam axis, at a distance of 2.6 m from the target.

The Plastic Ball detector, consisting of 655 \(\Delta E-E \) modules, measures all and identifies most of the charged particles in the angular range 30° < \(\theta < 160° \) [7]. Together, the Plastic Ball and the multiplicity detectors cover 97% of 4\(\pi \) sr.

The detectors are able to measure charged particles which have an energy high enough to penetrate the walls of the vacuum system, the windows of the detectors, and the air in between. For the Plastic Ball detector the thresholds are 11 MeV for protons and approximately 11 \(A \) MeV for heavier fragments. For the multiplicity arrays the thresholds are approximately 25 MeV for protons and 14 MeV for pions.

The beam particles were identified in total-reflection Čerenkov counters. Reactions in these counters were vetoed by a halo-detector. Targets of C, Cu, Ag and Au, about 200 mg/cm² thick, were used. Data were taken with a minimum-bias trigger which required an energy in the ZDC of less than 0.85 TeV and 2.8 TeV for 60 and 200 A GeV incident energy, respectively, and that at least one charged particle should be recorded in the multiplicity arrays. “Target-get-in/target-out” trigger ratios were better than 40 : 1, and the vast majority of the background events were found to have low multiplicities. To a large extent those events were rejected in the off-line analysis.

3. Corrections to the data

A charged particle traversing a streamer-tube detector produces a streamer which sometimes can be sensed by more than one pad. The “fired” pads in one detector array were therefore filtered through a cluster routine which assigns “fired” pads to clusters, hereafter called hits. Typically, 60% of the hits consist of only one “fired” pad. If more than four adjacent pads “fired”, they were assigned to two or more hits.

The acceptance loss, due to the insensitivity in between the streamer tubes, sets an upper limit of the detection probability for charged particles [6]. In between the readout pads, on the circuit boards, there are also small insensitive areas. The probability of detecting a charged particle, traversing a multiplicity array, has been measured by using the information from three overlapping arrays. The overall detection probability was found to be 85%. A second method of estimating this quantity, using plastic scintillators on both sides of a detector plane for tagging, gave a similar result.

In order to separate good tracks from background tracks that do not arise from the target, hits in the different detector planes were correlated. These background tracks could for example be due to particles from secondary interactions in air and other materials, or due to albedo particles from the calorimeters in the experimental setup. In this correlation procedure the planes were used in pairs. The hits in the upstream plane were projected onto the downstream one. Candidates within a certain correlation radius, varying from 5 to 10 cm depending on the local padsizes, were considered and the one with the smallest deviation, using a cartesian norm, from the prediction in the downstream plane was used. The tracks so constructed were weighted by 0.85°. The effect of “false correlations” was studied by a Monte Carlo program. If the incoming charged particle is seen in one plane but missed in the second, a correlation could still be made with a nearby hit in that
plane. These "false correlations" have been corrected for and can contribute as much as 10% to the total yield of charged particles but usually are only a few percent. In the angular region where only one detector plane was used the yield of charged particles was weighted with 0.85. This was the reduced by a polar angle dependent factor to correct for the background tracks which do not arise from the target. This factor, typically in the order of 10–15%, was determined from the angular regions where correlations were made.

The yield of charged particles as a function of polar angle was corrected for the contributions from the following processes:

(i) γ-conversion. In order to keep the contribution from γ-conversion low, a 300–500 μm thick aluminum target-chamber and a downstream 500 μm carbon fiber beam-pipe have been employed. The correction is at most 4.4% at $\theta = 1.7^\circ$ and goes down to 2.4% at $\theta = 8^\circ$. Note that electron–positron pairs will almost always be assigned to the same hit.

(ii) Secondary hadronic interactions. As for γ-conversion, the probability for nuclear interactions of hadrons in the carbon-fiber beam pipe increases with decreasing polar angle. The probability is 2.6% at $\theta = 1.7^\circ$ and decreases to 1.2% at $\theta = 8^\circ$. Although the probabilities are quite small, the corrections are still important since each interaction can produce several charged particles, their number depending on the momentum of the incident particle. For calculating the number of charged secondaries emitted in the forward region we used a phenomenological model [8]. We estimate the total contribution from secondary hadronic interactions to be less than 7% around $\theta = 2.0^\circ$ and then it decreases with polar angle.

(iii) Multiple-hits. The probability that two or more particles hit the same detector element depends on the particle density and the detector granularity. The highest multiple-hit probability is found in the angular region of 30–35° and for θ less than 2°. In the case of central oxygen-gold collisions at 200 A GeV these corrections are 40% and 20%, respectively. In most regions the corrections are smaller than a few percent.

γ-conversion and secondary hadronic interactions, as well as absorption, in the target are not corrected for. We estimate that for the most central collisions, where all the 16 projectile nucleons participate, the charged particle multiplicity increases due to target interactions by 1.5% on the average, the increase reaching 5% (10%) for 1% (0.1%) of these events.

Furthermore we have estimated the contribution to the charged-particle spectra from decaying neutral strange particles into charged decay-products. The Fritiof model predicts a relative contribution of about 7% to the total charged-particle yield from the processes $\Delta^0 \rightarrow \pi^-n^+$ and $K^0_s \rightarrow \pi^+\pi^-$. Due to the large dimensions of our experimental setup most of these decay products are observed, and consequently, they are included in the data. This fact should be kept in mind when direct comparisons with data from other experiments are made.

4. Multiplicity and pseudorapidity distributions

In figs. 1a and 1b we present the charged-particle multiplicity distributions in the range $-1.7 < \eta < 4.2$ for 60 and 200 A GeV 16O interactions with C, Cu, Ag, and Au targets, samples with the minimum-bias trigger. In the very low multiplicity region a dip occurs which is dominantly a consequence of our trigger conditions. The multiplicity distribution of 200 A GeV 16O + Au reactions extends to multiplicities of around 500 charged particles, which corresponds to more than 400 produced charged particles.

In order to compare with the Fritiof model [5] we exhibit in figs. 1c and 1d the multiplicity distribu-
Fig. 2. Pseudorapidity-density distributions of charged particles in interactions between 16O and (a) various targets at 60 A GeV, (b) various targets at 200 A GeV, (c) Au at different "centralities" at 60 A GeV, and (d) Au at different "centralities" at 200 A GeV. The statistical errors are smaller than the symbols.

Table 1

<table>
<thead>
<tr>
<th>Energy</th>
<th>Target</th>
<th>Peak height</th>
<th>Peak position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>Fritiof data</td>
</tr>
<tr>
<td>60 A GeV</td>
<td>Au</td>
<td>38.8</td>
<td>32.6</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>30.9</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>25.3</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>13.6</td>
<td>11.6</td>
</tr>
<tr>
<td>200 A GeV</td>
<td>Au</td>
<td>58.8</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>51.7</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>42.6</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>23.0</td>
<td>16.8</td>
</tr>
</tbody>
</table>

5. The target mass dependence

In the inset of fig. 3 we show the target mass, A_T, dependence of the charged-particle densities, ρ, for central interactions between 16O and Cu, Ag and Au at 200 A GeV. Here the centrality criterion is that less than 20% of the beam energy is deposited in the ZDC, which corresponds to events where presumably al-
most all of the oxygen nucleons participate. The densities, \(\rho \), are extracted in \(\eta \)-bins ranging from \(-1.7\) to 4.2. In order to study how the charged-particle density depends on the target mass, we have chosen to use the simple parametrization \(\rho \sim A^\alpha \). This parametrization gives a fairly good description of the data in all rapidity regions considered, but the exponent varies considerably with \(\eta \). Fig. 3 shows \(\alpha(\eta) \) as obtained by least-squares fits, exemplified in the inset. The same parametrization is used for the 60 \(A \) GeV data and these results are included in fig. 3. \(\alpha(\eta) \) has a maximum around \(\eta = 0 \) and decreases rapidly with \(\eta \), indicating that a “global target dependence” is strongly dependent on the rapidity region considered. \(\alpha \) being close to one for low values of \(\eta \) might indicate the importance of complete target break-up. The target dependence varies smoothly over the whole \(\eta \)-interval and no regions where \(\alpha(\eta) \) is fairly constant are observed. As \(\eta \) approaches 4, the projectile influence is dominant and the particle yield becomes independent of the target mass. The similarity between the two energies suggests that the target influence is essentially independent of the incident energy.

6. Transverse energy per particle

In ref. [9] the transverse energy, \(E_T \), distributions measured by the Mid-Rapidity Calorimeter [4] were presented. The inset of fig. 4 shows the \(E_T \) versus the charged-particle multiplicity, \(n_{\text{ch}} \), for \(^{16}\text{O} + \text{Au} \) at 200 \(A \) GeV, both quantities measured in the \(\eta \)-interval 2.4 to 4.0. A linear relationship is seen. In fig. 4 we show the average \(E_T/n_{\text{ch}} \) as a function of the energy in the ZDC, at both bombarding energies and for all four targets. (Observe the broken scale on the \(y \)-axis.) It should be noted that the contribution from neutral particles is included in the \(E_T \). The \(E_T/n_{\text{ch}} \) stays fairly constant over the total ZDC energy-range independent of projectile energy and target and has an average value of 550 MeV at both energies. An assumption of equal contributions from negative, positive, and neutral particles lowers this value to 370 MeV per particle. This is in approximate agreement with earlier findings in \(p-p \), \(p-\text{nucleus} \) and \(\alpha-\alpha \) interactions [10].

7. Particle-density fluctuations and energy densities

The constant value of the average \(E_T/n_{\text{ch}} \) shows that an energy-density estimate can be made using a for-
Fig. 4. E_T per charged particle for interactions between 16O and various targets at 60 and 200 A GeV as a function of E_{ZDC}. The inset shows E_T versus charged-particle multiplicity for 16O+Au reactions at 200 A GeV. Statistical errors are exemplified.

The formula with a constant transverse mass, e.g. $e_0 = \frac{3}{2} \rho m_T/\tau_0 \pi R^2$ [11]. Here ρ is the charged-particle density, m_T is the transverse mass, τ_0 is the initial formation time, and R is the radius of the transverse reaction zone. For central collisions of oxygen on larger nuclei we have used $m_T = 0.37$ GeV, $\tau_0 = 1$ fm/c.

Fig. 5. Charged-particle density distributions for 16O induced reactions with various targets at 200 A GeV. The upper axis shows the calculated energy density in the region of applicability [11].
$R = 1.2 \ A^{1/3} \ \text{fm}$, and $A = 16$. In fig. 5 we show the cross section for observing a given particle density, ρ_{max}, for the 200 $\ A$ GeV data. Here ρ_{max} is defined in each event as $\Delta n_{\text{ch}}/\Delta \eta$ in the region $2.75 < \eta < 3.25$. The tails of the distributions extend to larger values of ρ_{max} as the target mass increases, and the extreme events have calculated energy densities well above 3 GeV/fm3. This is consistent with the findings of refs. [2,9] where somewhat different methods to estimate energy densities were applied.

8. Conclusions

We have presented charged-particle distributions as a function of target mass and “centrality” of the collision. Events with more than 450 charged particles have been observed. The Fritiof model underestimates the cross section for the highest multiplicities, particularly at 200 $\ A$ GeV. The pseudorapidity value where the particle density reaches its maximum is shifted backwards as the target mass increases. This behavior is in qualitative agreement with the Fritiof model. We observe an excess in the particle yield in the central rapidity region, prominent at 200 $\ A$ GeV, when we compare with the model. For central collisions the target dependence of the particle yield varies strongly with the polar angle. In an A^1 parametrization of the charged-particle densities, the extracted α-values range from 0.8 to 0, and a comparison with the simple geometrical expectation of $\frac{1}{2}$ is meaningful only if the full angular region is covered. Although the particle yield increases with energy, the influence of the target is almost the same at the two energies. The average transverse energy per charged particle is essentially independent of energy, target mass and “centrality” of the interaction. Particle densities up to 160 charged particles per unit pseudorapidity are readed – a value which has to await theoretical interpretations.

Acknowledgement

The authors wish to acknowledge the professional job done by the accelerator groups at CERN, GSI and LBL. We are grateful for the help obtained from the Frascati National Laboratory during the construction phase of the streamer tubes. We would like to express our deep gratitude to Pio Picchi, Per Grafström, Max Reinharz, Hubert Martine, Michel Clement and Robin Dillon for the assistance and the cooperation in the West Area, CERN. We owe a lot to Michael Marquardt, Anton Przybyla and Arno Schwinn for their devoted work with the streamer-tube detectors. Partial support by the West German BMFT and DFG, the Swedish NFR, the United States DOE, the Humboldt Foundation, and the CERN EP-division is gratefully acknowledged.

References