Azimuthal correlations in the target fragmentation region of high energy nuclear collisions

WA80 Collaboration

T.C. Awese, D. Bockd, R. Bocka, G. Clewingd, S. Garpmanc, R. Glasowd, H.Ä. Gustafssonc, H.H. Gutbroda, G. Hölkerd, P. Jacobsb, K.H. Kampertd,1, B.W. Kolba, Th. Listerd, H. Löhnerf, I. Lundf, F.E. Obenshaine, A. Oskarssoni, I. Otterlundc, T. Peitzmannd, F. Plasile, A.M. Poskanzerb, M. Purschkea, H.G. Ritterb, R. Santod, H.R. Schmidta, T. Siemiarczuka,2, S.P. Sørensenc,g, K. Steffensd, P. Steinhaeusera,1, E. Stenlundc, D. Stükend, G.R. Younge,

a Gesellschaft für Schwerionenforschung, D-64220 Darmstadt, Germany
b Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
c University of Lund, S-22362 Lund, Sweden
d University of Münster, D-48149 Münster, Germany
e Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
f KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands
g University of Tennessee, Knoxville, TN 37996, USA

Received 29 January 1996; revised manuscript received 24 April 1996
Editor: R.H. Siemens

Abstract

Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range $-1.73 \leq \eta \leq 1.32$ are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p+Au collisions at the Berkeley BEVALAC and for 200 A-GeV/c p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical “back-to-back” correlation, a “side-by-side” correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.

The investigation of pion and baryon spectra and collective flow phenomena at relativistic energies is a well established field of nuclear research [1–3]. It has been addressed theoretically more than 20 years ago [4,5] and was investigated for the first time at the BEVALAC more than 10 years ago [6]. Recently, the study of the interaction of these particle species among themselves within the nuclear medium and the possible formation of Δ-matter has gained re-

1 E-mail: Kampert at IK1.FZK.de.
2 Institute for Nuclear Studies, Warsaw, Poland.

0370-2693/96/$12.00 Copyright © 1996 Published by Elsevier Science B.V. All rights reserved.
PII S0370-2693(96)00601-6
newed attraction [7–12]. At relativistic energies, i.e. at bombarding energies around 1 A-GeV, the most important process involving nucleons and pions is the excitation of the Δ(1232) resonance. As the fate of a pion produced at these beam energies is governed by the reactions \(\pi NN \rightarrow \Delta N \rightarrow NN \) and \(\pi N \rightarrow \Delta \rightarrow \pi N \), one obviously should focus onto observables, where pion absorption and rescattering plays a role. Observables influenced by these processes should be the pion abundance itself as well as their energy and azimuthal distributions with respect to the reaction plane. The collision geometry of heavy-ion reactions delivers a "gauge": once the reaction plane is known, one can find regions (in 3-dimensional coordinate space) where pions can escape the reaction zone with either minimal or maximal reinteraction in baryonic spectator matter [13].

In this letter we shall present results from proton-nucleus and nucleus-nucleus reactions both at relativistic (4.9 GeV) as well as at ultrarelativistic energies (200 A-GeV/c). It has been shown [14] that the target fragmentation region at ultrarelativistic energies features similar characteristics as the central rapidity zone at relativistic energies, i.e. by restricting the investigation to \(y \lesssim 0 \) one can expect to cover the resonance regime as discussed above. We shall investigate azimuthal correlations both for positive pions and protons and study their dependence on the geometry of the reaction system.

The data were taken employing the Plastic Ball detector [15] at the Berkeley BEVALAC and at the CERN-SPS in the WA80 experiment. The Plastic Ball is a modular, azimuthally symmetric array of \(\Delta E-E \) telescopes covering the polar range from 160° to 30° in the laboratory. Full particle identification is achieved for particles stopped in the \(E \) counter, thus limiting the energy range of accepted light baryons to 40 MeV \(\leq E_{\text{kin}}/A \leq 240 \) MeV and of positive pions to 20 MeV \(\leq E_{\text{kin}}^\pi \leq 120 \) MeV. The pseudorapidity coverage of \(-1.73 \leq \eta \leq 1.32 \) is ideally suited to study the target fragmentation region at ultrarelativistic energies. If not mentioned differently, the data were analyzed under minimum bias trigger conditions.

An investigation of the target mass dependence of the proton, deuteron, and pion yields is depicted in Fig. 1 for 200 GeV/c p+Au reactions (\(A \equiv C, \text{Al}, \text{Cu}, \text{Ag}, \text{Au} \)). The individual yields have been parameterized as \(dN/d\eta(A) \propto A^{\alpha(\eta)} \) and the exponent \(\alpha \) is plotted as a function of the pseudorapidity \(\eta \). The backward protons (Fig. 1a) show a clear trend towards a value of \(\alpha = 1 \), while backward deuterons even exceed \(\alpha = 1 \). Previous analyses accepting all charged particles from central 200 A-GeV/c S+A collisions as well as studies of the transverse energy of 60 and 200 A-GeV/c O+A collisions in the target region have provided very similar results [16,17].

The stronger target mass dependence of deuteron production can be qualitatively understood within the coalescence picture, where \(\rho_d \approx \rho_p \cdot \rho_n \) at low phase space densities [18]. Based on the experimental observation of \(\rho_p \sim A \), and assuming \(\rho_p \approx \rho_n \), a dependence of deuteron production \(\rho_d \propto A^2 \) at low particle multiplicities would be inferred as an upper
limit. However, taking the saturation of ρ_d/ρ_p to a constant value at high multiplicities into account (see Ref. [18]), the average multiplicity integrated A-dependence of deuteron production is expected to scale with A^α with $\alpha_p < \alpha_d < 2\alpha_p$.

In any event, the observed A-dependence of baryons is a clear indication that the energy loss of the projectile is distributed over the full target nucleus. This is in contrast to what would be expected from a pure participant spectator picture. The experimental findings for baryons are well reproduced by VENUS 4.12 simulations. VENUS [19] is a string model which treats rescattering of secondary particles in a rather simplistic way: as two objects approach each other below a critical distance they fuse with subsequent isotropic decay. This corresponds, for the case of NN interactions, to elastic NN scattering.

The situation is quite different for pions as shown in Fig. 1b. Here α stays at about 0.4 for all values of α, while, in contrast, the simulated pion yields from VENUS exhibit an increasing value of α for decreasing values of η. This behavior might be taken as an indication that the large resonance cross section (which is not taken into account in VENUS) plays an important role to decrease the pion yield via absorption as the target mass increases.

More information about possible absorption and rescattering effects can be obtained from azimuthal particle correlations. To search for such kind of effects between protons or between pions in the target rapidity range, a correlation function $C(\Delta\varphi)$ is constructed as follows:

$$C(\Delta\varphi) = \frac{dN}{d(\Delta\varphi)} \quad \text{where}$$

$$\Delta\varphi = \arccos \left(\frac{Q_{\text{back}} \cdot Q_{\text{forw}}}{|Q_{\text{back}}| \cdot |Q_{\text{forw}}|} \right)$$

$$Q_{\text{back}} = \sum_{\gamma < \gamma_0} p_{\perp}^i \quad \text{and} \quad Q_{\text{forw}} = \sum_{\gamma \geq \gamma_0} p_{\perp}^i .$$

The value of the rapidity γ_0 is chosen as 0.2. This is guided by the experimental fact that the target pseudo rapidity distribution of protons peaks at $\eta \approx 0.5$ [20], corresponding approximately to the value stated above. Furthermore, it follows the idea of a target "fireball" moving with a rapidity γ_0. The influence of the actually chosen value of γ_0 to the experimental results, furthermore, has been checked by varying γ_0 in a reasonable range 0.1 $\leq \gamma_0 \leq 0.3$. Within these limits no significant change of the correlation function has been observed.

Essentially, $C(\Delta\varphi)$ measures whether the particles in the backward and forward hemispheres of the target fireball are preferentially emitted "back-to-back" ($\Delta\varphi = 180^\circ$) or "side-by-side" ($\Delta\varphi = 0^\circ$), meaning on the opposite or on the same side of the reaction plane, respectively.

Fig. 2 shows the experimental correlation function $C(\Delta\varphi)$ under minimum bias trigger conditions for 4.9 GeV (top) and 200 GeV/c (bottom) protons impinging on a Au target. The lefthand and righthand figures present $C(\Delta\varphi)$ for protons and positive pions, respectively.

Both, for protons and for pions a clear correlation is observed, but of opposite direction. To quantify these experimental results, the data were fitted by $C(\Delta\varphi) \propto 1 + \xi \cos(\Delta\varphi)$ and the strength of the correlation is defined as

$$\zeta \equiv \frac{C(0^\circ)}{C(180^\circ)} = \frac{1 + \xi}{1 - \xi}.$$

As can be seen, one observes $\zeta < 1$ for protons.
and $\zeta > 1$ for pions, meaning that protons are preferentially emitted back-to-back, while pions are emitted side-by-side with respect to y_0. Detector asymmetries, which might cause an artificial side-by-side correlation, have been studied carefully by investigating the azimuthal distributions of Q_{back} and Q_{forw} individually. The observed maximum deviations from azimuthal symmetry allow to set a limit to the influence of the correlation strength by $\Delta \zeta = +0.03$ at most. This maximum FWHM shift is indicated in the values of ζ.

The back-to-back emission of protons can be understood as resulting from (local) transverse momentum conservation. This interpretation is supported also by results from string models like VENUS (see Ref. [8]). On the other hand, the side-by-side correlation of pions can naturally be explained based on the picture that pions, which are created in a $b \neq 0$ fm collision either suffer rescattering or even complete absorption in the target spectator matter. Both processes will result in a relative depletion of pions in the geometrical direction of the target spectator matter and hence will cause an azimuthal side-by-side correlation as observed in the experimental data. While for a $b \approx 0$ fm collision the emission directions of pions with respect to the reaction plane are expected to become azimuthally symmetric, the azimuthal distributions are expected to become more and more asymmetric as the impact parameter increases.

This hypothesis is clearly supported by the observed target mass and impact parameter dependence of the correlation. The latter dependence has been determined both for p- and for heavy-ion induced reactions by applying cuts to the transverse energy measured event-by-event with the Mid-RApidity Calorimeter (MIRAC) [21]. Such kind of a global event quantity has proven to be a valuable tool for obtaining information about the impact parameter in nuclear collisions and about the violence of the reaction in p-nucleus interactions. The events were thus divided into two bins with small and large amount of E_T, which in O+Au and S+Au collisions correspond to about 50% of the most peripheral and 20% of the most central fraction of the total minimum bias cross section. The lack of statistics in p+Au interactions, however, allowed only a division into 50% most peripheral and central reactions, respectively. Despite the rather weak cuts, particularly in p+Au interactions, the events are denoted as “peripheral” and “central” in the following.

Fig. 3 shows the results for positive pions from p+Au, O+Au, and S+Au reactions under these trigger conditions. The correlation function or, equivalently, the correlation strength parameter clearly shows a behavior as one would expect from the rescattering and absorption picture in spectator matter: the strength of the correlation is enhanced for peripheral collisions and almost vanishes for central O+Au and S+Au collisions. Furthermore, the azimuthal asymmetry appears to be stronger for p-induced reactions than for O- and S-induced reactions. Both variations can be
in Fig. 4 for protons and positive pions. The curves through the data points are to guide the eye. Again, we stress the interpretation within the geometrical absorption picture: as the target mass increases the side-by-side asymmetry increases for the pions due to the increasing amount of matter in their path. In contrast, the back-to-back asymmetry of protons tends to vanish. This is also expected, because correlations due to momentum conservation, as discussed above, become weaker for higher event multiplicities, i.e. for heavier systems.

The observations presented in this Letter are consistent with a recent investigation of charged pion flow \[10\] in symmetric heavy-ion collisions at SIS energies. Here, anisotropic pion flow relative to the reaction plane was found ("pion squeeze-out") and absorption of pions in the reaction plane was conjectured to be the cause for the anisotropy. Due to the different reaction geometry in symmetric systems, the spectator matter located in the reaction plane causes a stronger absorption and rescattering of pions in plane than out of plane.

Another investigation of large angle two-particle correlations, carried out at the 3.6 A GeV C-beam in Dubna \[22\] showed a back-to-back pion correlation for light-A, no correlation for a medium-A, and a side-by-side correlation for a heavy-A targets. For protons and deuterons, a back-to-back correlation was observed for all targets. Again, these results appear to be consistent with our observed proton and pion azimuthal correlations and with the variation of the pion correlation when going from a C to a Au target.

In summary, we have found conclusive experimental evidence for pion absorption and rescattering at target rapidities in ultrarelativistic proton-nucleus and nucleus-nucleus collisions. We observe both an impact parameter dependence and a target mass dependence of the strength of the azimuthal correlation function. The data are consistent with the geometrical picture of pions suffering secondary interactions while traveling through target spectator matter and thereby heating up the entire target nucleus. The latter argument is supported both by the observed almost linear rise of the target rapidity proton multiplicity with target mass \(A\), as well as by two-proton correlations \[23\] where the extracted source sizes show a dependence on the target mass similar to \(\propto A^{1/3}\) and are close to the nuclei radii.
References